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ITL. On the Motion of Cireular Cylinders in a Viscous Fluid.

By R. A. Frazer, B.4. (Cantab.), B.Sc. (Lond.), Aerodynamics Department, National
Physical Laboratory.

(Communicated by H. Lams, F.R.S.)
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3 - (Received February 11,—Read March b, 1925.)

= ‘

E E Introduction. »

~ = The flow of viscous fluids has been dealt with in numerous mathematical researches.
=) Unlike most other branches of theoretical physics, rational hydrodynamics entails
E 8 complications due to the non-linearity of the equations of motion, and—in comparison

with the effort expended—relatively inconsiderable advance has been made.

In the standard “slow motion ” treatment the product, or inertia, terms of the

equations are neglected, by means of which artifice some of the outstanding difficulties

- are conveniently circumvented. However, even with this simplification, compara-
tively few solutions to problems have been published. The need for a wider range
of results of this particular type became apparent in connection with an ulterior
investigation, which will be specified shortly. The present paper* is preliminary in
this sense, that it deals mainly with such ““ slow-motion ”’ problems, and only briefly
with the extensions in view. On the other hand, the results, even in the immature
stage, need not be without some immediate application, notably to problems relating
to fluids of great viscosity. Solutions of this nature admit a further useful interpreta-
tion in connection with the deflection of an unloaded flat plate—but the application
to elastic theory is outside the range of the paper.

The investigation is restricted to two-dimensional problems in which the fluid is
supposed bounded by circular cylinders. The methods, which are believed to be in
great measure novel, have also been found powerful in researches on more complex
forms of boundary. The early paragraphs are devoted to an indication of a functional
treatment, which, although tentative, has the advantages that it narrows the field of
enquiry, and exposes properties that are fundamental in the desired solution. An
illustration deals with a type of flow maintained between a pair of concentric cylinders,
and special interest attaches to the case where the outer radius increases indefinitely.
Here the stream-function determines the conditions of flow due to a stationary
cylinder immersed in a uniform infinite stream, and develops the well-known anomalous
characteristics associated with such types of motion by StoxkEs.{

-The main portion of the paper deals with systems in which the finite boundaries are
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94 MR. R. A. FRAZER ON THE MOTION OF

defined as a pair of mutually external circular cylinders. The method employed is an
adaptation of Stors’ principle of successive reflections,* and leads to an expression
of very general form, applicable to problems in which arbitrary distributions of velocity
are prescribed over the cylinders. However, in the applications considered, attention is
confined tothe practical supposition that the boundaries are maintained in steady rotation.

The rotation problem has already been treated in extenso by JerrERYT for the case
where one cylinder wholly encloses the other. With reference to the external case
JEFFERY states that * there is, in general, no steady motion of the fluid for which the
velocity of the fluid vanishes at infinity,” and presents, in illustration, the analysis
for equal cylinders spinning with equal angular velocities in opposite senses. He adds
that the more general problem entails some complication. In the present paper the
complete solution for the external case is obtained, but the greater part of the inter-
mediary reductions have been omitted. It is believed that the results do not encroach
to any important degree upon JEFFERY’S published work.

Special consideration is given to the conditions of the stream at infinity. Tt is shown
that a solution of normal character may be obtained consistent with given rates of
rotation of the cylinders and with constancy of the stream at infinity ; but that the
magnitude of that stream devolves upon the other conditions, Further, that a possible
state of steady motion in a fluid at rest at infinity is where any pair of spinning
cylinders are rotated appropriately asa ““ planetary > system about a particular  focus ”
situated on their line of centres.

In illustration of the more general results, a number of relatively simple problems,
for which the solution reduces to finite terms, are treated in detail. The types examined
include the simpler “ planetary ” systems, and the case in which a cylinder both rotates
and translates in the presence of a fixed rigid wall. A calculation of the stress com-
ponents and forces operating on the latter system shows that the viscous drag and the
couple on the cylinder are, respectively, independent of the rotary and the transla-
tional motions. In the limiting case in which the cylinder approaches indefinitely
close to the wall, both the drag and the couple tend to infinite values, and a parabolic
distribution of velocity develops across the film of contact.

Some reference is now desirable to the particular application for which the results
were intended. The complete equations of flow have been attacked by approximate
methods from several angles. It will be sufficient here to cite the recent researches of
Bamrstow,} CAVE AND LANG on the resistance of cylinders and plates. HaRrrISON’S§
paper on the motion of spheres and cylinders includes a valuable résumé of various
methods in use. In general, these methods devolve upon an elaboration of the
well-known approximation proposed by OSEEN.

* Ibid., vol. 1, p. 28.

T ‘ Roy. Soc. Proc.,” A, vol. 101, pp. 169-174 (1922).

1 “ Phil Trans. Royal Society,” A, vol. 223, pp. 383-432 (1923).
§ ¢ Trans. Camb. Phil. Soc.,” vol. 28, No. 4, pp. 71-88.
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CIRCULAR CYLINDERS IN A VISCOUS FLUID. 95

A different line of approach has been suggested by CowLEY and Lrvy.* It entails
the somewhat daring assumption that the stream function is expansible as an infinite
series of positive powers of a non-dimensional parameter (Reynolds’ number) UL/v.
The initial term of the seriesis the “ slow-motion " solution, and the remaining functions
are derived successively by integration of subsidiary linear equations. So far as the
writer is aware, no adequate test of the utility of the method has as yet been made.
In their original paper CowLEY and LEVY treat the case of laminar flow between rotating
concentric cylinders as an instance of the efficiency of their mode of solution : but the
illustration is inadequate, since the UL/v expansion here clearly degenerates into the
initial term. '

In the absence of any convincing proof as to the legitimacy of the operations proposed,
the most obvious procedure appeared to be an examination of the form of the expan-
sion for a particular case. A difficulty, apparent at the outset, was the limited
selection of problems for which the initial ““ slow-motion ’ term was already available.
The present paper is intended to amplify the stock of preliminary results, thus preparing
the ground for the more elaborate investigation.

The final section provides a sketch of the procedure and includes an illustrative
application, carried as far as the first power of UL/y, for the case of a single translating
cylinder. The result, at this early stage of the expansion, cannot be viewed as promising,
since it postulates the formation of eddies both behind and in front of the cylinder.
On the other hand, these inadmissible conditions need not necessarily persist as the
expansion proceeds, and do not per se constitute evidence that the method should be
condemned. It is, however, well to remember that in this particular problem the
analytical difficulties are accentuated by the anomalous form of the initial stream-
function.  With simple initial solutions of normal type, the UL/v expansion might more
readily be pursued to the higher powers, and the results be found more convincing.

The following Contents Table summarises the range of the paper. In the explanatory
diagrams the boundaries are indicated in heavy lines, and their prescribed state of
motion by arrows. In cases where a boundary is fixed no symbol is appended.

CONTENTS.
. g Pages. Figs.
§ 1. The KBquations of Motion . . . . . . . . . . . . . . . . . 97-98 —
§ 2. Single Translating Cylinder . . . . . . . . . . . . . . . . 98102 1,2
u
u
l
u

The radius of the outer circular boundary is eventually increased indefinitely.

* ¢ Phil. Mag.,” vol. 41, pp. 584-607 (1921).
0 2
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Pages. Figs.
§ 3. Rotating cylinder in presence of fixed wall . . . . . . . . . . . 102-103 3
‘:i
§ 4. Principle of successive reflections . . . Coo e oo oL 108104 —
§ 5. On functions conjugate with regard to two uyhudurs ..+ . . .« .o lob-107 —
§ 6. Application to general distributions over the boundavies . . . . . . 107-108 - -
§ 7. Reduction for a pair of rotating cylinders. . . . . . <o log-11l -
Ca
%&
§ 8. Determination of constants . . . . . . . . . . . . . . . . 111-113 —
§ 9. Special cases : Series terms absent . . . . . . . Coe . 113115 3
10. Special cases : fluid at rest at infinity, and planctary systcmb ..o . 115-118 4
0&1
0(3-
* Equal radii and equal angular velocities. Aand erot‘abo about their centres, and the
entire system rotates about P.
§ 11. Special cases : Cylinders in contact . . . . . . . . . . . . , 118-12] 5
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CIRCULAR CYLINDERS IN A~VISCOUS FLUID. 97
‘ Pages. Figs.
§ 12. Special cases : Cylinder rotating in presence of translating wall . . . . 121123 —
O

)

V<
§ 13. Bpecial cases: Film of contact . . . . . . . . . . . . . . 123-125 —_
§ 14. Extension of solution for single translating eylinder . . . . . . . . 125-130 2, 64, 68

§ 1. The Equations of Motion.

The paper is restricted to steady two-dimensional flow, and deals primarily with
solutions where inertia terms are viewed as negligible. IFor convenience, the equations
for the stream function are initially quoted below in their general form, inclusive of
product terms. The standard notation, as laid down by Lams,* is adopted.

0y 9L 2 ot
R e T ¢
=iy oy s ()
E=V . .. .. ®
o oY .
= — e
v oy’ T W : ®)
In the sequel, extensive use will be made of the transformation
AN=xdty, p=r—a,. . . - . . . . . (4)
in which -
i=vV—1
Here ‘
vem Oy &
o oy? onop’

and the equations may be replaced by the equivalent set

, O oy et o¢ ag 5
2)87\ 7l dEn EPRE 87\> I €9
o .
=4 O
R Q
. .o . oY
= —_— A == — — . . . . . . . 7
u 1w 27'8;1,’ U — 2%81 _ (7)

* ¢ Treatise on Hydrodynamics,” Cambridge, 1916 ; p. 574.
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98 MR. R. A. FRAZER ON THE MOTION OF

For slow steady motion of the particular type considered, the equation for the stream
function becomes

At 3
87\2892M0’ Ce e e e e (8)

of which the most general integral is
8 = i[ply (A) — AR (W] + T )+ (), . . . (9)

F,, ¥,, etc., denoting arbitrary functions.
For motion under no external forces the equivalent mean-pressure function becomes

Pﬁ:%[pg_(x)+w'2(p)1. N ¢ )

The following further formule conveniently determine the stress components.

PeotPy=—2p, . . . . . . . . . . . (l1a)
. [y 9%

Paw — Pyy = — davp <87\2 — g{ﬁ) ) (11B)

I i i ‘

Pay = Py = 2vp <é~i§+a”2>. N € 2 16)]

The major portion of the paper deals with functions of type (9), in relation to particular
boundary requirements.

§ 2. Swngle Translating Circular Cylinder.

A functional method of solution has been found effective in the treatment of certain
problems. The present paragraph provides a simple illustration.

The flow under consideration is imagined to take place in the annulus bounded by a
pair of concentric cylinders. At each point of the outer cylinder the stream is supposed
maintained uniform : whereas the inner boundary remains at rest (see diagram, contents
table). The limiting case where the outer radius is increased indefinitely is interpreted
as determining the flow due to a stationary cylinder immersed in a uniform stream (or,
alternatively, the flow due to a single translating cylinder).

The boundary conditions are specified more precisely below, in the notation of §1.
For convenience, the inner cylinder is selected of unit radius.

u=0v=0 for rap=1, . . . . . . . (12a)

w=U and v=0 for ap=R: . . . . . . (12B)
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CIRCULAR CYLINDERS IN A VISCOUS FLUID. 99

Since the flow is clearly symmetrical about the axis 4 = 0, the appropriate integral
form, equivalent to (9), will be

20 = VT ()~ uF ()] S = . . . . . (3)

in which F, f, denote functions to be determined.
The corresponding velocity components at any point become (see 7)

== T () — a8 (p) 4+ f (n), . . . . . (14a)
w—iv=TF@)—pF W)+ ). . . . . . . (14B)

Conditions (12) are satisfied provided the following functional relations are valid
for all values of a parameter ¢.

O::F<%>-—«%F’(f)+f’(t), N 6 179
/ 2
U__r@) Rwwero. . . . . . .. (16w
Elimination of f* (¢) leads to the equation
(B (L~ (re— ) O
U__F<T> F<t> Re—nTQ (g

Inspection suggests a solution of form
F(t) = o+ p log ¢,
and, on substitution in (16), we obtain |

B _ U
(R2+1)  2[(R*-+1)logR—(R2—1)]

The pressure is single-valued, and the stream function reduces to

o, ==

. ) 2
— 20 = o (% —yp) [(R2 + 1) log (Ap) — ap —|—%--- (R2— 1)] .o (1
In polar co-ordinates the result may be expressed more generally as follows ;
RyR?
|:2 (Re2+R2)r log r + ——‘l—————— 7+ {R2—R2—2 (R +R2) log Ry} r}

[(Roz + R?) log <R0> (R )] ,(18)

u=0v=0, for r=R,,

¢ = Usin 0
where

u="U and v»=0, for » =R,
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100 MR. R. A. FRAZER ON THE MOTION OF

Representative stream-lines are shown plotted in fig. 1 for the special case Ry =1,

36

R =5, curves being drawn for constant values of — —U— , where
; 2 .
— g%di = <527' log # -+ ;5 — % 247*) sin0, , . . (18a)

F1g. 1.—8low steady flow is imagined to proceed in the annulus bounded by a pair of concentric eircular
cylinders R =5 and Ry =1. At each point of the outer boundary u = U (constant), and » = 0.
The inner cylinder is fixed. Curves are drawn for constant values ¢ of — 36y /U (see equation 184
of text).

When R is exceedingly large in comparison with the inner radius, the only term of
importance that need be retained in (18) is

b smbrlogr

This is a legitimate; but anomalous, form of stream function, which determines a
uniform stream at great distances and zero velocity throughout the finite domain.* For
fig. 2 representative curves, corresponding to (19), have been computed on the assump-
tion that log, R = 5 (i.e., R = 148-4).  Since the outer radius is now only moderately
large—a convenience in the preparation of the diagram—the boundary conditions
will only be satisfied approximately. Thus, whereas no radial component of velocity
is admitted over the inner cylinder, there exists a maximum slipping component amount-
ing to as much as 0-2 U. Discrepancies of a comparable order are allowed over the
other boundary. Clearly, if R be chosen sufficiently large, the discrepancies will lie
within any specified limits. ‘

* In the solution proposed by BErRY and SwaIx anomalous characteristics are absent, but the velocity
is logarithmically infinite at infinite distances ; see * Roy. Soc. Proc.,” A, vol. 102 (1923).


http://rsta.royalsocietypublishing.org/

A\

/ y

A

a
{ B
L 2

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

yA \
V. \
AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

CIRCULAR CYLINDERS IN A VISCOUS FLUID. 101

As was inferred by StoxEs,* the anomalous form of (19) will persist with fixed internal
boundaries of any cross-sectional shape which nowhere extend to infinity. This is
evident from the form of the function (19), which is independent of the shape of the
inner cylinder.

An enquiry which naturally suggests itself in this connection, is the search for simple
stream functions in which anomalous features are absent. The most obvious modifica-

e —— Ts)

\ +25

+75
: \ 155
Outagr circular T35 :
| boundary.
- —— Y'Y V) S ————

—-x

Fie. 2.—Approximate stream-lines are drawn for flow of the type described in fig. 1. The radius R of
the outer boundary is here increased to 148-4. The fixed inner cylinder, of unit radius, is represented
by the black circle. Curves are drawn for constant values of ¢/U (see equation 19 of text). Maximum
discrepancies of 0-2 U are allowed over both boundaries.

tion is to allow a circular cylinder to translate in the vicinity of an infinite plane boundary
or, alternatively, to allow the cylinder to rotate under like conditions. The paragraph
which follows show that these types admit of ready solution by the functional method.
Both problems, however, are particular cases of the more elaborate system where two

* Loc. cit.
VOL. CCXXV.—A P
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102 MR. R. A. FRAZER ON THE MOTION OF

mutually external circular cylinders rotate with specified angular velocities. For this
general problem a special treatment will be developed.

§3. Rotating Cylinder in Presence of Fied Wall,

Suppose a cylinder of unit radius to rotate with uniform counter-clockwise angular
velocity O in the presence of a fixed rigid wall OX. Rectangular axes OX, OY are
selected as below, the ordinate of the centre of the cylinder being denoted by d. Write
1d =cand A2 =d?— 1.

AN
C )

[ X

d

FIXED WALL

Since the motion is unsymmetrical about the axis OX, the stream function is here
taken in the general form

iy = B () — ey () LA —f () . . . . . . (20)
The boundary conditions may be written

ol 0 and 2 —_0 gy (A—c)(p+ec) =1,

A (r—o) (v +o)
v __ ob -
T 0 and P for A—p =0,

and the functional relations equivalent to (15) become

i =R (=) () o+, - ew
01 ‘e — A%\ [tc — A%\ o, ,

*2(t+c):F2(ct+c >~<2+0>F1 @O+L @ (2)

0=TF()—tF O)+f" @), . . . . . . . . (2lc)

0="F, @)—F'O)+L@), . . . . . . . . (2p)
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CIRCULAR CYLINDERS IN A VISCOUS FLUID. 103

On elimination of f," and f,” we obtain

O o [—lc— A% £ A2\
up—@*F%_fi;—> FA0+<t_C)&<a ... (224)

O lc— A%\ A,
m2(t-}-c)“F2<,;_|_c> Fz(t)+<t_|_o>F1 @. . . . . (22B)

Assume '
t-+8 )
Fl(t):o;;_[__AA;? F2(t)_"o;:_[_A22:

which, clearly, determine a single-valued expression for pressure
Substitution in (22) leads to

o v o 00
1 2 T 27

Oci
@1:‘1‘32:“"‘2--

Whence, on integration of (21) for f; and f,, the stream function becomes
“kn(l“ﬂ)[l""‘id __ E’v‘l"&d] @_c_l[ —1<l _ -1 _V_'} (23
0= 7 |wT& wrA AL o5 e

At infinite distances from the origin the stream velocity vanishes. The solution is
examined further in § 9.

§ 4. Application of the Principle of Successive Reflections.

The foregoing methods have the disadvantage of being tentative. For more general
problems the principle of successive reflections, as laid down by StoxEes,* will be
employed. Applications have been made by LADENBURGT and others, in connection
with the motion of spheres. Initially, the general case will be investigated, in which
definite boundary conditions, not necessarily purely rotational, are specified over the
peripheries of two mutually external cylinders A and B. For the moment, the fluid
will be assumed at rest at infinity ; although this supposition will be revised at a later
stage of the analysis.

In the light of STokES’ method the stream function is expressible in the form

Y = by 4 dip + Y1 -+ Yaore + etc. | e (29

The first term ¢, is the stream function giving the correct boundary conditions over
A and at infinity, on the assumption that B is removed. At each point of the contour

* Loc. eit.
T Ann. der Physik,” vol. 23, pp. 447-458 (1907).
r 2
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104 MR. R. A. FRAZER ON THE MOTION OF

B certain velocity components are induced due to ¢, : the reversed components will
be described as due to ¢, and ““ reflected ” from B. The term {,, is obtained on the
hypothesis that A is removed and B reinstated, that its derivatives furnish the above
reflected velocities at each point of B, and that the fluid is at rest at infinity. The
process is repeated indefinitely.

Tt may be useful to introduce the more general theory by two simple examples. The
results will be applied, although in a different form, in the sequel.

Consider the following pair of stream functions

== [fi(n)—fole)]+ b (3) Fdo(w), . . . . . . . (254)
Yo = (A — ) [fo (M) ¢ () —fi (0) — "1 (w)] —da (B) — s (). . (25B)

Over the plane y = 0 (v.e., A = ) the values of 3¢,/0n and 0¢,/on are equal,
but of opposite sign, to the corresponding derivatives due to (258). TFurther,
if the singularities of (254) all lie on one side of ¥y = 0, then those of (258) lie on the
opposite side. For convenience, two functions related in the above manner will be
described as ““ conjugate ”’ with regard to the plane y = 0.

A pair which exhibit a similar property with respect to the circular boundary ap =1,
are

b= 0= DIAW AL +dl), o (26)

=8 (- )L ] a2 o

The symbol ¢,’ (1 /1) here implies differentiation of ¢, () with respect to ¢, and subsequent
substitution of 1/ for ¢.
These relations provide a basis for the solution of the pa,rtwular problems in view.

Suppose, for example, a cylinder A (A — ¢ p - = 1) to rotate with unit angular
velocity in the presence of a further fixed cylinder B (M:. = 1). The initial stream
function ¢, of the sequence is obtained on the assumption that B is removed ; it is
clearly of form

2), =log(x —ia) +-log (w-+ia). . . . . . . (21)

The second function ¢, is determined with A removed and B reinstated. - Tts
singularities must lie within B, and its derivatives over this contour must be equal
to the reversed derivatives due to ¢,. The appropriate function is, clearly, the con-
jugate of (27), and is immediately obtained by substitution of the relevant functional
forms in (26). A continuation of the process would eventually furnish the series (24),
and it was by such methods that the general problem was first approached. However,
the results indicated a more convenient treatment, to which attention will now be
drawn.


http://rsta.royalsocietypublishing.org/

fa \

a
-
I ¥
y & ) ©

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

CIRCULAR CYLINDERS IN A VISCOUS FLUID. 105

§ 5.—O0n Functions Conjugate with regard to a Pawr of Cylinders A and B.

D o
K}
o

Use will be made of the following transformation from the variables z, y to p, o, or,
alternatively, from 2, p to Q, o.

Ew—kiy:——iycoth(&_g—ig+8>§—~7}~{coth(£2+8)

uEw——iy:+iycoth<P;ic+8>E+iycoth(co+8). .. (28)

The constants y and 3 are selected so that the two mutually external circles A and B
correspond to p = — K and p = - K, respectively. If a, b denote the radij,, and D
the distance separating the centres, then )

v =asinh (K —28) =bsinh (K +423), . . . . (294)
vD=absinh2K. . . . . . . . . . (298)
Tt is assumed throughout that K is positive and = 28. Valués of p <— K lead to points

lying within A'; and values of p > -~ K determine points within B.
For further convenience, write

K—-2=4 and K+28=x, . . . . . . (30)

and let
U sinh x, = (A — 4y coth «) (w + oy coth ) —a?, . . . . (31)
B sinh «; = (A + 4y coth k) (w — 9y coth i) — 0% . . . . (32)
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106 MR. R. A. FRAZER ON THE MOTION OF

Then, alternatively, in terms of the variables Q, o

v2 sinh (0 + Q -+ K)

A= sinh x; sinh &, sinh (o - 3) sinh (Q 4-3) "~

(33)

_ 2 sinh (0 + Q — K)
sinh «; sinh &, sinh (o -} 8) sinh (Q + 8) "

(34)

It will now be shown that the following pair of stream functions ¢, and §,., are
conjugate with respect to the circle B, provided the functions g¢,, g,+1, ga+s are suitably
related.

Yo = — NGir (@ +mK) + By, (@ +mK). . . . . . . . (35

Y1 = — Bpsg (—o +m + 1K)+ Agps (—o+m+1K) . . (36)
The conditions necessary are that the composite function

¥ = bt $ups =— A [Garr (Q +mK) — g1 (— 0 +m+1K)]
—B[gprs(— 0+ m 1K) —g, (@ +mK)] . . (37)
shall have derivatives o¥ /0Q, 0¥ /0w, which vanish over the circle B, i.e., when
%g—ver; this boundary Q + o = K, and so, identically,
Gusr (Q 4 mK) — gpss (— 0 +m + 1K) = 0.

Hence the only terms which remain on differentiation for Q are

/"‘\IIJ‘ o) a%
(%ﬁ)]} = (Q()B a% [gn+l (Q + ’an)] - <é—ﬁ>ll [gn-}-g ("“ w “!— m + 1 I{) — (x (Q -~!— mK)].

On application of (33) and (34), and further reduction, it follows that ( QF—) =0,
’ \ B

0Q
provided
Gnvs (@ + mK) — g, (Q + mK) = sinh QK% [Gns1 (Q + mK)].
a
A similar equation determines the condition that ( %) = 0. Hence, the fundamental
\C B

relation which ensures the conjugacy of the stream functions is
Gura (£) — gu (t) = sinh QK_gt_ [ )] . . . . . . (38)

Another pair, which are conjugate with respect to B for the same condition, may be
obtained by interchange of the variables Q and « in (35) and (36).
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It may, further, be established that (38) also represents the condition for which the
following are conjugate with respect to the cylinder A.

o= —BGu (—Q+mK) +Ap (— Q@ +mK). . . . . (39
¢n+1:—5u!]n+2(ﬁ)+m+1K)—I—%gn+1(m+7%—i—lK) . . . (40)

A second pair is again obtained by interchange of Q and w.

Inspection of (35) and (36) indicates that, vn general, if the singularities of ¢, all
lie within A, then those of ¢,,, all lie within B : and parallel conclusions may be drawn
with regard to (39) and (40). In the application to any special case, however, an exami-
nation of the relevant singularities becomes desirable. The conditions at infinity,
moreover, need careful inspection : since, even if the derivatives of ¢, vanish at infinity,
the same property does not necessarily attach to ¢,.,. This difficulty will be illustrated
at a later stage.

§ 6. Application to General Velocity Distributions over the Boundaries.

The broad application of the foregoing theorems will now be considered, and the
details left for treatment in relation to the case of rotation. It will be supposed at the
outset that B is at rest ; the extension to more elaborate cases is illustrated subsequently.
With B removed, the initial (real) stream function due to A is accepted in a general
form

bo=—Ulg (o) + 9. ()] +Blgo(0) + g0 (V)] . . . . (41

In the manner illustrated on p. 104, successive reflections determine a sequence of
conjugate stream functions, which may in the light of § 5 be written :—

1= =B (—Q+K)+ g (— o + K)]+ Algs (— 2 + K) + 9, (— @ + K},
by = — Al g, (“)+2K)+ga (Q +2K)] + B g, (w+2K)+92 (Q +2K)],

Lete, o0 L 00 (42)

Guez (1) =sinh 2K¢' iy ) F 9 (8). . . . . . . (43)

Hence, provided the necessary conditions for convergence and re-arrangement are
satisfied, the final stream function becomes

91 (0) + g5 (o + 2K) + g5 (0 + 4K) + ...
=—A| —gi(—0+K)—¢g;(— o+ 3K)— ..
plus similar terms in Q
90 (©) + go (o + 2K) -+ ga (0 + 4K) +
+9B| —gp(—0+K)—g(—o+3K)—... [ . (44)

plus similar terms in Q

where
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108 MR. R. A. FRAZER ON THE MOTION OF

Each of the functions g, may clearly be expressed, on application of the recurrence
formula (43), in terms of ¢;, go, and their derivatives. Functions of this class have
been studied in detail by SoNiNE* and others; only the following properties need be
noted here.

Suppose 9, (¢) to denote the coefficient of 4 in the expansion (supposed convergent) of

1 . fp X My,
T =5 in positive powers of 4. Thus
: 1
- 2 o —
%0 + 3@y + % @Y+ = s (45)
Then
Yol@)=1; N(e)=a; S (a)=a41, etc.,
S, (@) =a" 4 (n —1)a"2 4 (%_zl)én— 3) gr-s + ... (46)
The function ¢,., (f) is expressible in terms of ¢, (¢) and g, () as follows
_ 0 ' 9\
Jors =0 (2 )0 O+ 3u(eZ)00 0. . . . . . 6
where ¢ = sinh 2 K and » = 0.
With ¢ = 2 sinh «, equation (46) reduces to the simpler form
Sn(QSinhm)zcosh(n—]—l)oc or sinh(n+1)oc,. L (48)

cosh o cosh «

according as 1 is even or odd.

The reduction of (44) for forms of ¢, and ¢,, corresponding to cases of rotation, will
now be undertaken. A further application, arising from the analogy with elastic theory,
suggests itself in relation to problems in which an unloaded flat plate is clamped in
a specified manner along a pair of mutually external circular boundaries.t However,
the detailed reductions for such cases hardly fall within the range of the paper.

§ 7. Reduction for a Paiwr of Rotating Cylinders.

At the outset the simpler case will be taken in which A is supposed rotating
uniformly, and B maintained at rest. Here the initial stream function {, becomes, on
suppression of a constant multiplier

$o = log (A — @y coth x;) +log (w4 2y coth i) . . . . (49)

* ¢ Math. Ann.,” vol. 16, pp. 1-9, 71-80 (1880). Further references in ‘ A Treatise on the Theory of Bessel
Functions,” by G. N. Warsox, pp. 353-3564 (1922).

+ In this case the equation V%) = O determines the deflection y at any point of the plate. For a
discussion of the appropriate boundary conditions, see ¢ Phil. Mag.,” vol. 41, p. 599.
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Identifying this with the form (41), we obtain, after some reduction and omission of a
further constant multiplier, the following expressions for the initial functions of the
sequence.

¢ (6) = + sinh (¢ — K — 8) sinh (¢ + 3) 1og{Si“i1iIffl4(‘tE;;8)}. . (50)
70 (1) = — sinh (¢ 4+ K — 8) sinh (¢ + 8) 1og{3i“:;rf}‘l‘(*;§8—)8)}. . (51)

The reduction of the series which comprise the coefficients of A and 9B in (44) may be
effected by expansion of (50) and (51) in terms of exponentials, and application of the
relations (45)—(48). The analysis is exceedingly laborious, and only the final results
will be given.

Let

148

8= 2 [ (0 +2K) —gorna (0 +ZFIK)] . . . . (32)

Sy = g0 () + Eo [Gorsa (0 +2r F-2K) — gorin (— 0+ 2r 1K) . (58)
Then, apart from simple terms, which are reinstated later with others in (60), we obtain

18; = [cosh (20 — K) — cosh «,] E (o) + EZ a, sinh s (20 —K) . . (54)

18, = [cosh (20 + K) — cosh ] B (6) + 3 b, sinh s (20 +K) . . (55)

in which

(o) — log [sim}. (K +o—5 3) sinh (3K + & — 3 ?) sinh (5K +o —3) J (56)
sinh (o 4 8) sinh (2K + o -+ 3) sinh (4K + o 4 3) ...
. sinh? 2K 2s cosh k, sinh s, (s — 1) sinh (s 4-1) x;
(sinh? 25K — 2 sinh? 2K) [ sinh 25K sinh (s 4 1) 2K

s 1) sinh (s — 1) x,
= sinzlsts—(ls)QK) ] - (&)

b — sinh? 2K 2s cosh K, sinh sk, . (s.—- 1) sinh (s 1) xy
*  (sinh? 2sK — s? sinh? 2K)|_ sinh 2sK sinh (s 4+ 1) 2K
_(s-F1)sinh (s — 1)k, | o (58)

sinh (s —1) 2K

It is readily established that each of the series so defined is absolutely and uniformly
convergent.

The foregoing results develop on the assumption that the cylinder A is maintained
in a state of uniform rotation, and that B is at rest. On the reverse supposition, the
initial function corresponding to (49), is

%o = log (A + 4y coth «,) -+ log (» —-'iy cothry), . . . . (59)
VOL. CCXXV.—A . Q
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110 MR. R. A. FRAZER ON THE MOTION OF

equivalent to reversal of the sign of K. The full analysis could now be repeated for the
new conditions. It will, however, be sufficiently evident from the reciprocity in the
form of the coefficients @, and b,, and from the symmetry of the elliptic function E,
that the final series would be identical with those already obtained in (54) and (55).
The latter are, moreover, clearly applicable to the more general case where both
cylinders A and B are in a state of steady rotation.

In general, a rigorous treatment of the rotation problem on these lines demands a
precise term by term adjustment of the successive stream functions, to ensure the
correct conditions at infinity. It is possible to effect this adjustment—in a certain
measure-—by the addition of simple elements to each such function ; but the process
becomes unduly complex, and needs no detailed illustration.

A considerably more convenient, if less stringent, procedure, is to proceed with the
summation of the functions g in the manner prescribed, and to adjust, as completely
as possible, the behaviour of the final result by the inclusion of appropriate terms.
A solution conducted on the latter basis has, in point of fact, the advantage that it
may cover a somewhat wider problem than would otherwise be embraced. In order
to complete the solution for the general case of rotation this second treatment will be
adopted.

It appears that all conditions, such as may legitimately be imposed at infinity, can
be satisfied by incorporating in the solution a simple ‘“ adjusting ” function of the
following type :

Y = — Ala, sinh (20 — K) + A, {cosh (20 — K) — cosh «, } -+ ¢ (20 — K)
-+ similar terms in Q]

+ 9B [b; sinh (20 + K) + B, {cosh (20 + K) — cosh «;} - b, (20 + K)
+ similar terms in Q]

Fago+Q) . . L L L (60)

For computation it is preferable to express the elliptic function I& as a series, and to
accept the completed stream function in the modified form

3 a, sinh s (26 — K) 4 A, {cosh (20 — K) — cosh k,} + @, (20 — K)
1

-+ similar terms in Q

2 b, sinh s (20 + K) + B, {cosh (20 -+ K) — cosh k,} - by (20 4 K)
1

C¥ =—A

- B
| - similar terms in Q )
-_100 {Sinh (K 4+ o —8)sinh (K — o 4 8)} 7
nh 9K ° sinh (o -+ 98)
2 2 . .
51;{]1 iu'lsithK . % e %X sinh 23 sinh 2sw + 2, e~ ¥¥ cosh 258 cosh 2sw
v : 1 S sinh sK T S cosh sK
_ - similar terms in Q
a2 -
+ _ (0-FQ). . . . . . ... (e1)

sinh k, sinh «,
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For s = 2 the constants a, b, are defined by (57) and (58). Of the other eight constants
C, ay, by, g, 64, by, Ay, By, two are redundant ; since, as may readily be shown by a
simple transformation of (61), the last four of this set occur associated in the pairs
a; + by, A, + B,. Six effective constants remain for determination by the conditions
of the problem, which must now be specified precisely.

§ 8. Determination of Constants.

The cylinders A, B are assumed to be rotating with uniform counter-clockwise
angular velocities O,, O,, respectively. ~The nature of the stream at infinity will be
examined later. ,

For A, with o ++ Q = — K, the conditions imposed become, after some reduction,

or _ov _ 70,
oo 0Q  2sinh (o -} 3)sinh (Q 4 3) sinh «,

(62)

Whilst for B, with o 4+ Q = -+ K,

v __ 0,
do  0Q 2 sinh (o 4+ 8) sinh (Q -+ 3) sinh «,

(63)

A direct verification of the solution may now be conducted, by evaluation of the
derivatives of (61) with respect to one or other of the variables ; but the reductions are
heavy, and will be omitted. The following four relations are found sufficient to assure
correct conditions over the cylinders :—

CO, sinh x, =4 (A; + B,) cosh «, + «, cosh «; - Sa;,K
- 4by sinh 2K — 2 sinh 2K cosh «; + 4 cosh 2K sinh «;, . (644a)

— €O, sinh k&, = 4 (A; + B,) cosh «; + «, cosh k, —4a, sinh 2K

— 8boK - 2 sinh 2K cosh k, — 4 cosh 2K sinh x,, . . . (64B)
) , A ) 2 sinh 2

0 = 4 (@, + b;) sinh 2K — 4 (A, - B,) cosh 2K — «, -+ 2 sinh 2K — -&)S—hﬁ? (64¢)
: . 2 sinh 2

0 = — 4 (a, + b,)sinh 2K — 4 (A, + B,) cosh 2K — «y — 2 sinh 2K + »E%l—s%—ﬁz-. (64D)

One further relation may be extracted by reference to the behaviour of the function (61)
at infinity. For this purpose it is preferable to revert to the original variables 2, p,
and to utilise the formulee

€0 = (M) e®, . . . . . . . . . (65a)
w1y
2 — <%—:|—?%> e® . . . . . . . . . (65B)

Q 2
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112 MR. R. A. FRAZER ON THE MOTION OF

The total derivatives of ¥ at infinity may then be shown reducible to

O<Ei?_> — 2 |:§<a sinh sk, | b Sinh8K1>+ oKy »}_‘ boky ]

o "\ *Simhx, | “sinhr,/  sinhr, @ sinhx

w(A]_ +B) + —2 (K cOth e, -~ 1) —‘»é.ﬁ“ (rey coth iy — 1)

sinh «, inh «;
@ .
L9 — ¥ —2— (s cosh sk, — coth «, sinh s«x, 66
R 1 sinh Kg( 2 ! ) , (66)
S ——E)‘—- (s cosh sk; — coth «, sinh si)
| * 1 sinh

with an equivalent expression for C(3¥ /on), obtained by interchange of » and g, and
reversal of the sign of 7. The equivalent velocity components u_, v_ are determined
by (7), and are finite provided

§<“s siphSK2 N ssiph SK1> Ok _boK1 _ (67)
1 sinh «, sinh x,/ ' sinhk, ' sinhk

Under these conditions the stream at infinity becomes constant in magnitude, and
normal to the line of centres, being determined by

_ ; _

A, -+ B o — 1) — =2 —

(A, -+ By) -+ Soh (ke coth x; — 1) b (ky coth ey — 1)

4 S .
Uy =& — ? e (s cosh sk, — coth «, sinh sk,) , . (68a
- 2
- % sinbﬁ - (s cosh sk; — coth «, sinh sk;)
_ 1 ;

v, =0. . . . . . .. ... .. ... ... (e88)

It appears that, in general, the value of u, devolves upon the remaining boundary con-
ditions imposed, and cannot be regarded as prescribed.
A final relation ensures that the pressure is single-valued. Reference to (10) shows

readily that the only components of (61) which contribute a many-valued expression
for the pressure, are included under

OF = — (a3 — b;B) (0 -+ Q).

Amongst these, the only illegitimate terms* are reducible to the form

O‘F:——m< % by >(°>+Q)-

sinh k, sinh «,

* The terms in (& - Q) which are retained are equivalent to the element Dy o sinh « in Jeffery’s paper,
loc. cit., p. 170:
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The further requisite condition is, clearly,

@ by
sinh k, sinh«’

Equating each ratio to a constant ¢,, we have, on reduction of the system (64) and (67),
and reversion to the notation of (29), the following relations:—

v tanh 2K

al+b1 :”_———]j'—"—‘. . o . . . . . B . . . . (69A)
S0+ 01) = v oK@+ +D] . . . . . .. . (69m)
~ (At B D (0,84 01) = v (0.0—O0P) +co[ZKa (0,~0)+4D (0.5~ 07], (69¢)
2y = 2 sinh (ky—x;) — 4 (A; +B;)cosh 2K, . . . . (69D)
@y = %("’ and by = Y—jﬂ, N (12753
_ ytan2K & l: sinh sk, sinh SKlJ .
Koy = D % % sinh =, b, *sinh .o (oow)

The above conditions determine the six effective constants uniquely, subject to the
conditions prescribed over the cylinders, and to the imposition of a constant stream
at infinity.

We proceed to the consideration of special cases.

§ 9. Special Cases : Sertes Terms Absent.

At the outset, it may be observed thatthe series terms of (61) dlsappear provided 1/C
vanishes. In general, this condition is satisfied when

O@+0p=0. . . . . . . . . . (70
The solution now reduces to a relatively simple form, viz. :—

2 tanh 2K . + sinh (p — K) [cosh (p + K) cos ¢ — cosh Klj (11)
O@—0p) ~° cosh 2K [cosh (p -+ 28) — cos o] '

At infinity the velocity components are (see (68) )

_02—0F)  d e =0 . . . .. (1)

uw = 2D ©

With @ = b (i.e., 8 = 0) we have the corresponding conditions O, = — O, ; and the
solution becomes

tanh 2K . 1 sinh (¢ — K) [cosh (p 4 K) cos o — cosh K] (73)
a0, —°f cosh 2K [cosh p — cos o] C
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which may be identified with JEFFERY’S solution for this case by conversion of the
quantities v, ¢, ¢, K, O, into his equivalent symbols ¢, — «, — 8, «, o.

A further sub-case of interest is where the radius b becomes infinite. The solution
then relates to steady rotation of a circular cylinder A in the presence of a fixed wall,*
and becomes, with K = — 28§

sinh (p — K) [cosh (p 4 K) cos ¢ — cosh 2K]

Y L
a* 0, cosh2K Pt cosh 2K [cosh (p — K) — cos o] (74)

Here, the velocity components at infinity vanish. In order to compare this with the
result already obtained in § 3, the following substitutions should be made in (23)

A=y and d = cosh 2K,

A = — 4y coth <&:_I§_ﬂj\p
2 /

with

uz%«i\fcoth<(3—:—~;[—{2—_——£). e (1)

The solutions are readily shown to agree.

“Fixed wall
F1a. 3.—The stream-lines shown are due to a cylinder rotating in the presence of a fixed wall. The centre
of the cylinder lies at a diameter’s distance from the wall, and the fluid is at rest at infinity. Curves
are drawn for constant values of ¥ /0, (see equation 74 of text).

Fig. 3 represents the results of calculations for a special case of (74), in which
a=1; v =snh2K; 2= cosh2K

* JEFFERY proceeds to this case from his solution for a cylinder rotating inside a non-concentric circular
vessel.
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The centre of A is selected at a diameter’s distance from the plane. It may be noted
that the stream-line ¥'/O, = 0-760 is compounded of the fixed plane, and of a closed
curve, touching the plane and enclosing eddying fluid.

§ 10. Special Cases : Stream at Rest at Infinity, and “ Planetary > Systems.

It has already been shown that a unique normal solution to the general problem may
be obtained such that the velocity components at infinity are constant. In general,
however, the precise magnitude of the stream at infinity must be regarded as devolving
upon the conditions prescribed for the cylinders. It will, indeed, be readily evident
that any additional terms which might be incorporated in the solution in order to bring
that stream to rest, would necessarily have to satisfy conditions which have already
been shown in §2 to lead to anomalous functions.

However, an examination of equations (68) and (69) indicates that the fluid can always
be brought to rest at infinity by choice of a suitable ratio between the angular velocities
0. and O,. A relatively simple case is obtained* when

a=1"b and 0,=+0,. . . . . . . . (16)
Here 8 = 0 and
sinh K sinh? 2K
2 cosh (s — 1) K cosh sK cosh (s 4 1) K [sinh 2sK -- s sinh 2K|

a, == b, = (774)

for s= 2,
sinh? K

Gt b= — cosh 2K’ (775)
%Q.u: snh? K -+ ¢o (2K +sinh2K), . . . . . . . . . . . . (170)
AFB i =apg=0,. . . . . « . . . e oo (1)

wy="by=cosinh K. . . . . . . . . . . .. (77E)

The derivatives at infinity now become (see (66) )

o\ o, [—sinh?K % sinhsK | .
C<57\—>w N 2“(\ cosh 2K - 2§as sinh K T ZG"K>’ - (184)

¥\ o, [—sinh’K > sinh sK ,
C< aﬁ">w = ( cosh 2K T 2%% sinh K T 20°K>' ... (788)
Hence, if

: inh? K 2 sinh sK
2K = 20l 2 gy, SDESR (79
%o cosh 2K . Smh K’ (79)
we have sufficient to determine the solution for equal cylinders rotating with equal
angular velocities in the same sense. Under these conditions the stream is undisturbed
at infinity.

* For the corresponding case @ = b, and O, = — 0, see equation (73).
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116 MR. R. A. FRAZER ON THE MOTION OF

The expressions (78) illustrate a somewhat more general class of problem. Under
conditions where (79) is not satisfied, the derivatives become of form

C@a\g):zpﬂ, L (sm)
q%>=m& L (8w)

where H is now regarded as some specified constant. At infinite distances the fluid
now circulates uniformly about the origin with angular velocity 4H/C ; and the funct on
¥ may here be interpreted as determining the stream-lines, relative to the selected
. co-ordinate axes, when the cylinders are rotating about their own axes and in addition
about the ortgin with uniform angular velocity 4H/C.

More generally, the relation (66) indicates that a possible type of steady motion in a
fluid at rest at infinity, is where any pair of rotating cylinders are rotated appropriately
as a planetary system about a particular “ focus ”” on their line of centres. It will be
sufficient to examine a few special cases.

Suppose @ = b, with O, and O, arbitrary. Here, with a, defined by (774), we have

o - sinh? K 2 sinh sK
oty — —9Ya
¢ < 8x> 20 [QGOK cosh 2K S Gnh K

]

|+2iv B, )

together with the relations (69a-E), which become

et (0,4 0)=— (A + By ﬁ%:j"_—‘gf%vl) — 4o (2Kar +4D), . (825)
aO:bO:@’Cg, o (82¢)
ag=—4(A;+B)cosh2K. . . . . . . . . . . (8D)

If Y denote the ordinate of the “ focus  of revolution, and O, the corresponding angular
velocity of the system about that point, we have

o _sinh?!K % sinhsK
006_4[2001{ S 2§asmsinhK]’ L (83)
COY =4y (A B . . . (8
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CIRCULAR CYLINDERS IN A VISCOUS FLUID. 117
Hence, from (82D)
a®* /0, — 0,
= Y 8
D\~ 0, > (85)

The series terms in 1" may be shown to disappear if

a2 (0, + 0,) = (2Ka? 4 yD) =¢ (86)

A=

a relation which provides the simplest illustration of the type required. Under these
conditions the stream function reduces to

2D sinh? K
b

Ka? (0,—0,) smh (p——K) [cosh (p+K)) cos 6 — cosh K]— 20,y?D (p sinh ¢ cosh K — K cosh ¢ sinh K)
Ka (cosh ¢ — cos o)

+ a2cosh2K (0, —0,) o, . . (87)
where ' .
_ @K (0, —{- O,)
and
__ (2Re® ++7) (0“ — 0,
Y — DE (o7 02,)' L (89)

With O, = O, we have the simple expression

Ka sinh? K __ (psinhp cosh K — K cosh p sinh K)

Y0, (cosh p -~ cos o) (50)
where '
_ 0, _ A
()c = m and Y = (. . . . . . . (91)
2K
In Cartesian co-ordinates this becomes "
2 g coth K o+ Pty
2 (g2 gp) —
0 (2 + o) < —=— 1/ coth™ ( o ) oo (92)

Typical stream-lines are shown plotted in fig. 4 for « = 1 and D == 4. Here

v =43; cothK=1154; K=1317; and g“:3‘63.

c

A notable feature is the “ figure of eight ”” stream-line ¥'/0, = 1-5, which indicates a
stagnation point at the origin (i.e., the central “ focus ” of revolution). '
VOL. CCXXV.—A R
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118 MR. R. A. FRAZER ON THE MOTION OF

F1g. 4.—The stream-lines represent the flow for a system in which two equal circular cylinders rotate with
equal angular velocities O,. The fluid at infinity circulates, relative to the axes shown with constant
angular velocity O, about the origin, where 0,/O. = 3-63. Curves are drawn for constant values
of V0. (see equation 92 of text).

§ 11. Special Cases : Cylinders in Conlact.

It may be of some interest to examine the form of the general solution when the
cylinders A and B are brought wnto contact.
The degenerate form of (61), equivalent to thls case, is obtained by a substitution
of type
K=eK; 8=¢¥; Q=cQ; o =c0"; yv=aek=bex, ;

in which ¢ becomes indefinitely small.
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CIRCULAR CYLINDERS IN A VISCOUS FLUID 119

The equivalent transformation of variables is

o' 4 ic’ 8 — 10K, .

T R (934)
. . / ‘ .

e - 1c + § — 1Ky (93B)

A consideration of the formule (69) will readily indicate that the constants ag, by, C,
e (A, + B,), and ca, are all finite and definite, and that @, + b, = 0 (s=1). The solution
now reduces to an expression of form

__ _4ab (' +K) A I o
or = (¢ F )2+ '2][ e (As 4 By) {(e" — K')? K9t} + 2ay (o — K')]
__8ab (e’ — )bo(P +K) | a
[( _1_3) o2 +80“Pa- e e (94)
equivalent, in Cartesian co-ordinates, to
A2
C (g2

(.762—{—J)+ ($+J)+F?/+(w2+'/2)a (95)

The constants A, C, F', G must be selected to satisty the correct conditions over the two
cylinders, viz. :—

ot

L = — f . 2 _| 2 — ) ) . y
s =0 and ay =0,(y —a) for o1y =2ay, . (964)
‘2% =0 and %j 0,(y+0b) for a*-442=—2by. . . (96B)

The following equations determine the constants:—

0 =20 — o — %, (97a)
0, =20~ A+ %, (978)
—a0a=%+F+i’gé, (97¢)
400, = 242 (o)

From the physical standpoint the most rational case is where the peripheral velocities
V of the cylinders are equal, .e.
00,=—00,=V. ., . . . . . . . . (98)
R 2


http://rsta.royalsocietypublishing.org/

a
A Y

A A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
I~
b \

S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

120 MR. R. A. FRAZER ON THE MOTION OF

We find here

6ab (0 — b) 2 8aPb*y?
@+¢) @+

(at by st 5D ) — @ —say (09)

The condition of steady motion is, thus, of the type illustrated in §10, such that the
rotating touching cylinders are themselves revolving as a system about a certain focus.
It is useless to delay over this result in its general form. In the particular case where
@ = b, the swirl at infinity vanishes, and the solution reduces to

2 dayp

W0 e Y

(100)

The fluid moves with constant speed 420, at infinity. A number of typical stream-
lines, corresponding to the case @ = 1, are represented in fig. 5.

T + 25

120

/\ +l-5

ﬂ 22
+O: 25
)

-0-25
05

-{-Q

—

¢

-2:0

— 775
Fia. 5.—The stream-lines represent the flow due to two equal rotating and touching cylinders. The

fluid moves with constant speed @0,/2 at infinity. Curves are drawn for constant values of ¥ [Oq
(see- equation 100 of text).

With b infinite in (99) we obtain the stream-lines (relative to the selected co-ordinate
axes) due to a cylinder, which rolls without slip on a fixed plane, viz.—
kS s
@, @y @rgp !
For comparison we set down the equivalent result for a cylinder rotating, and slipping
with relative velocity 2¢0,, against a fixed plane.

(101)

l]‘;" . 26[1 2

0w ez


http://rsta.royalsocietypublishing.org/

N

a
A
1~
A B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

N

A \

I~
b \

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

CIRCULAR CYLINDERS IN A VISCOUS FLUID. 121

It is of some importance to observe here that at the point of contact the first derivatives
of (101) and (102) behave normally ; whereas in both cases the higher derivatives
become infinite. It will be sufficient to examine (102). At any point, the velocity
components in polar co-ordinates become

T i; (sin0 —sin? 0) —1, . . . . . . . (103)
v _ 40 0 Py 0 | 104
oo T peos0sinto L (104)

A point 7, 0, near the origin, and lying within the fluid, must be such that » < 246 ;
whereas on the plane (y = 0) we have 6 = 0, and on the cylinder r = 2¢6. Hence, at
the origin, the first derivatives remain finite, and determine velocity components con-
sistent with the imposed conditions. On the other hand, the derivative 62¥'/ds? at the
origin is readily seen to be infinite, as might be expected from the discontinuity of velocity
imposed there. In the case of (101), although no relative motion occurs at the point of
contact, this derivative also becomes infinite.*

Such questions are, perhaps, not without some interest in connection with the theory
of lubrication, and two further sections are devoted to a fuller discussion of contact
problems from a different and, possibly, more illuminating angle.

§12. Special Cases : Cylinder Rotating in Presence of T'ranslating Wall.

The solution will first be derived for a cylinder A, which both rotates with angular
velocity O,, and translates with speed V, in the presence of a fixed plane boundary.f
The stream function obtained must be interpreted as determining the stream-lines
relative to the co-ordinate axes, a translational speed —V being assumed imparted to
the entire system. The result will then be examined critically as the cylinder is brought
into close vicinity to the wall. The following diagram illustrates the particular system
under discussion.

A/a”\

R,

oV wALL
0 X

When b is very large we have k, small, such that v = bk,, and it readily follows from

* Bee also wnfra, p. 125.
+ This case is also deducible from JEFFERY’S results.
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122 MR. R. A. FRAZER ON THE MOTION OF

(57) and (58) that both b and b remain finite. The conditions of the problem require
also that b0, = + V. From (69) we find

__ 8c,Kb
=22,

b (a; 4 b;) = — v tanh 2K,

2
(A1+ B1) = —0Cp [25‘0; 0,— 1] s

@y 4 2sinh K = — 4 (A, 4+ B,) cosh 2K,
with

g =Y and by =T%.
a

It follows that the series terms associated with € and ¥ in (61) vanish ; and a further
simple reduction shows that the logarithmic terms and related series differ by a constant
from o -+ Q. The stream function finally simplifies to

g_Ig\F g sinh (p + K)[cosh (p —K)cose —1] sinh 9K (p + K)sinh (p —K)

aV [cosh (p — K) — cos o] [cosh (p — K) — cos ¢
-+ eScosh2K, . . (105)
where
. 2Ka0,
S e -Vm 1- . . . . . . . . (106)

The transformation of variables is here

A = —— 4y coth <P—:——I;—j-—7£> s ..o (107a)
= -+ vy coth (E—:-I—;:—%—G> , (107B)
in which
=asinh2K, . . . . . . . . . (108a)
d=a cqsh 2K, . . . . . . . . . (108B)

where d denotes the distance of the centre of the cylinder from the plane y = 0.  When
V =0 the solution may be identified with (74) of §9.
The following form, equivalent to (105) in the alternative system of variables A and g,
is useful in connection with the computation of the stress components :—
4K

) . 1 1
~ = —ySl(x —id) (H+@d)—“2][x2+ ~a P-2+Y2J

i (n—u) — 284 1og§ijg§ 8 ;‘1‘3 —9Ki(r—u). . (109)
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CIRCULAR CYLINDERS IN A VISCOUS FLUID. 123

Expressions for the mean pressure p at any point, and for the individual stress components
may be derived on application of the formule (10) and (11). Only the results obtained
will be stated. A

Let p, denote the density of the fluid, and v the coefficient of kinematic viscosity.
Then for points on the plane y = 0

_4¢8 xd
Poe =Py = — P = IYi (vaV) (:r2 R .. . . (1104)
2y (S— 1)1
Pay = Pya == "( VPo )Ii(fl:72~|-“{2)2 (.’r,z—{««{z)_ . (IIOB)
Whilst for points on the cylinder
&2(—'{‘2—1—{,—7?— = 2sino (Y — sinh?2K) — S cosh 2K sin2s, . . . (111a)
Po
R sinh? /K _io > _
gVK—I%z—li—Pz[(S—}-l)coshQK—l—Scom] 2 (111B)
A smh K -+ g)
sink (K -+
k4
QEY?} 5 = [(S + 1) cosh 2K + S cos o] 2 . (111c)

. 6\
sinh <K — -§>

The latter expressions, with (11), are sufficient to determine the stress components
over the cylinder. The following further results are obtained by integration over one
or other of the boundaries. Let X,, Y, M, denote, respectively, the viscous drag,
the normal force, and the couple operating on the cylinder. Then

on%(vPGV), L (u2a)
Y():O, . . . . . . . . . . . (112B)

4an 0. d

It appears, therefore, that the drag X, and the couple M, are, respectively, independent
of the rotary and the translational motions of the cylinder.

: »(1120)

§13. Special Cases : Film of Contact.

The foregoing results lead to the conclusion that both the viscous drag and the couple
tend to infinite values as the cylinder approaches indefinitely close to the plane. In

* This agrees with JEFFERY’S formula, loc. cit., p. 172.
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124 MR. R. A. FRAZER ON THE MOTION OF

order to meet the physical difficulties associated with absolute contact, we presuppose a
very thin limiting film of fluid, of thickness 3, separating the boundaries. Under these
conditions, we have the approximate expressions

v = /243 ; I{ZM%; s:“_‘?.ﬁ<1_.%>~1,. .. (113)

together with d — o = 3.

(@) Solution for Points not in the Immediate Vicinity of the Origin.—Here, on intro-
duction of polar co-ordinates, the radius vector » may be assumed >1/20a8, and the
logarithmic term in (109) is legitimately expansible in the form

20,3
7

1og(p' +a) (O —y) 4 <\/;~2-“_8> sin 0 - -§-<

T ‘)Q‘sin 30 —ete. . (114)

When +/2a3/r is sufficiently small, the stream function will be found adequately
represented by the terms

2 3
¥ = 20 (a0, — 2V) o 1 oy~ o2 (00, V) @%ﬂﬁ Vy. . . (115)

It may be inferred that the solutions obtained in § 11 are sufficiently representative
for points which do not lie in the immediate vicinity of the film of contact.

(b) Solution for Points in Close Proximity to the Origin.—For points lying within the
limiting film, the radius vector » becomes <4/ 203, and the logarithm must now be
expanded in a series of positive powers of 7. Alternatively, we put » = y2’, p = vi/,
where A" and ' are finite, and retain the original form of (109).

The general features of the flow in this neighbourhood are, perhaps, sufficiently illus-
trated by a consideration of the velocity distribution across the narrowest portion of the
film of contact. :

On differentiation of the more general solution (109), we readily obtain for the velocity
u at any point ¥ on the axis v = 0

uK_ vy QYSy(Yz“E/d)_%logC“y)—K. ... (118)

VEAT ) vy

Under the conditions (113), with & small and y =<3, this may be written in the
approximate form

w (S @fr;l“?lf 117
V=% 1 SQ 5 S (117)
Whence, with ¥ = 0 and y = 5, we have respectively v = — V and v = a0, ; and the

velocity clearly remains finite and continuous, following a parabolic law across the gap.
The vertex of the parabola lies within the limiting film, provided (S 4- 1)/8>0. In par-
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ticular, when V = — a0,, the speed reaches a maximum $V at the centre of the gap,
and falls to the value V at either boundary. This parabolic distribution clearly accounts
for the infinite value of the derivative 0*¥/dy?, which was noted in § 11 for the case
where no relative motion occurs at the point of contact.

The foregoing investigation prompts the somewhat more general inference that
absolute contact between two rotating circular cylinders is primarily precluded by the
fact that a parabolic velocity distribution develops across the film of contact as the
boundaries approach one another, indicative of an infinite rate of shear. The further
consideration, that the physical properties of the fluid may become impaired when the
film attains molecular dimensions, hardly falls within the purview of a theoretical paper.

§ 14. Euxtension of Solution for Single Translating Cylinder.

The results enumerated in the foregoing paragraphs have been derived on the hypo-
thesis that the inertia terms associated with the equations of flow are negligible. In
their present form, therefore, the solutions admit a very restricted application. It
has, however, been pointed out in the Introduction that the work is primarily intended
to clear the ground for a closer scrutiny of the methods proposed by CowLEY and LEvy.

For completeness, a résumé of the further procedure is given below, in a form which
differs slightly from that laid down by the original authors. The early stages of the
reductions for the case of a single translating cylinder are appended, in order to illus-
trate the nature of the difficulties which are latent in a purely analytical application
of the method.

Kquations (5) and (6) of § 1 may be replaced by the single equation

&y __._@'(84* Py 2y Y > L. (us)

o op? 0% onop® o 9o

\

In the particular method proposed the variables A, u, ¢ are all rep]af&ed by non-dimen-
sional guantities, such as those defined below

r=1a"; p=1Lp; ¢ =TULY.

Here L and U are length and velocity factors specifying the class of problem under
discussion. Thus L defines the scale of the moving system, and U may be taken as
the steady velocity of a prescribed boundary.

However, as an analytical convenience (which is readily seen to be permissible), the
original variables A, p, will be retained, and only the third substitution effected. The
equation of flow becomes

R [zﬁﬂ_aﬂ,ﬂ] ‘
87\2 apﬁ - @C a)\ a)\ apa2 ap' a)\g 8!}, b . . . . (119)
where
= I—{E (119a)
VOL. CCXXV.—A s
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The function ¢’ is now viewed as expansible in positive powers of the parameter
C, eyg.,

¢’ _T?’I'] = 2[4y Oy - C20y LGP0y . . . . (120)
The series is substituted in (119), and the coefficient of each power of C equated to
zero. A system of subsidiary equations is thus derived, determining successively the
functions ¢, ¢y, Uy, ete. The first three of these equations are written below, differen-
tiations for A and p being indicated, for brevity, in suffix notation.

qJO,\A,u,u =0, . . . . . . IR (121A)
4)11\,\;}.;1. = dr‘ﬁ)\ kpo,\,‘u - (IJD“LIJO,\,\M’ * . N L » >, > » > (121B)
4)2)\/\,“; = Lpo)\"pl(\ % ‘1’1,\/\ - U1)\woi\ | 4)1’}‘&’)0'\’\”, Ce (1210)

The initial function ¢,, equivalent to the *“ slow-motion ” solution, is selected to satisfy
the boundary conditions of the problem : whilst the remainder are determined subject
to the condition that their first derivatives vanish over all the boundaries. In addition,
each function (or, alternatively, the final stream function) must furnish a legitimate
single-valued expression for the pressure.

In illustration, the analysis will be carried to the second term for the case of uniform
flow past a fixed circular cylinder of radius «. Since the method is such that any
boundary conditions satisfied by the initial term remain valid for the extended
solution, it will clearly be sufficient to commence with the simple function (19). This
approximate expression has already been shown to meet the desired conditions to any
degree of accuracy, provided the outer radius R be sufficiently large.

Proceeding on this basis, we choose I, = @ in (1194), and modify the stream function
to :—

zz%a = -+ ( ) G .. (122)
in which
y (0 —p)log (ap)
Yo o lOgR 5 e (123)
and
%MW = 4’0,\"30,\#“ — ‘If‘oﬂdﬁow,- (124)

The boundary conditions for ¢, are # = v = 0, both for 2 p=20a%and » ¢ =R2  After
suitable reduction (124) becomes

U Z_M[Eg_(5“)+%]j o (125)

L 64a? (log R)* L 222
whence, on integration

2 __ F_
$r = W[i\l(’g(k el 10%0@)-1“A"I-BML-l—%2 5+ El’ . (126)
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A, B, B, F, denoting constants to be determined. On introduction of the boundary
conditions for ¢, we obtain the following system of equations :—

A - Ba? -{—%4—% = — (log a)* — % log @,

A+FBR 4 E 45— —(log R — L logR,
R R
_2E F _ loga 1
aﬁ a;l— alﬂ 4“2,
B_Q_E”_B_‘_ _logR 1
R Rt R2 4R?

For simplicity assume the radius @ = 1; the final result may then be expressed in
the approximate form

7 (logr)* | *logr T
Y=—Usinb rlogr  U?sin 20 (logR)* ~ 2(logR)* R*llogR " 4 (log R)ZJ (127)
log R~ 16v ppel L1 }",.z~l+2
[2logR " 4 (logR)? r”

It will be observed that the anomalous form of the solution has now partially dis-
appeared. Thus, with R infinite and # finite, there remain the terms

Uz sin 26 1 ‘ :
d = T T 2 —_— .
¢ T <¢ + 5 2). B £43))

In the light of the present method the expression (128) may be viewed as a second
“ approximation ” to the true solution in the vicinity of the cylinder ; but the velocity
at infinity can only be adjusted by inclusion of the anomalous members. A considera-
tion of the symmetry of (128) shows that the resistance of the cylinder due to the terms
already developed, vanishes.

The influence of the second term of the expansion for a translating cylinder is illus-
trated by a comparison between figs. 2, 6A, 68. The first has already been described
m §2, and gives representative stream-lines corresponding to constant values of

Y

. log 7
Y — _&in0orlo8
UT T M e R

(129)

on the assumption that log, R = 5 (i.e., R = 148-4), and that the radius of the inner
cylinder is unity.
The second diagram (fig. 6a) indicates the system (¢ /U == const.), equivalent to the
~modified solution (127). In order to conform with the assumptions made, the ratio U/v
must be regarded as small ; for convenience, the value taken is U/v = 0-1, in any con-
sistent system of units. It has already been emphasised (see § 2) that when R is selected
s 2
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only moderately large, the boundary conditions will not be accurately satisfied. The dis-
crepancies can, however, be reduced to lie within any prescribed limits by taking R
sufficiently large. A further drastic modification in the stream pattern accompanies
this increase of R. The effect is illustrated in fig. 68, in which R has been assumed
increased to 26-8 X 102 (corresponding to log, R = 100). Here, only those curves

< .. . 148.4 ]

F1e. 6a.—Extended solution for the type of flow described in fig. 2, in which the outer radius R = 143 4.
The curves include the first two terms of the U/v expansion, and are drawn for constant values of
W /U (see equation 127 of text). The fixed inner cylinder is of unit radius, and Uy = 0-1 (in any
consistent units). Maximum discrepancies of 0-2 U are allowed over the boundaries.

representing the highest order of value of ¢/U, and ¢/U == 0, can conveniently be illus-
trated ; the lower order curves being packed between the curve ¢ /U == 0 and the outer
boundary. For this case the derivatives over the outer boundary (r = R) become

[e5)
-©-

= —1:01U sin 0,

D
<

]

=3 b
[aB]
{....

= —Uecos®, . . . . . . . . . . (130)
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CIRCULAR CYLINDERS IN A VISCOUS FLUID. 129

furnishing maximum discrepancies not exceeding 1 per cent. of U in the velocity com-
ponents parallel to the axes. Discrepancies of the same order will be incurred over the
inner cylinder » = 1.

The diagrams point to the somewhat remarkable conclusion that at the present
immature, and not necessarily convergent, stage of the expansion, eddies are formed

Outer circular boundary-
. 26 8x |o42

Fia. 68.—Extended solution for type of flow described in fig. 64, with the outer radius R increased to
26-8 x 102, Maximum discrepancies of 001 U are here allowed over the boundaries. The curves
are drawn for constant values of ¥[U x 107%.. The lower order curves are packed between ¥ = 0
and the outer boundary.

both behind, and in front of, the cylinder. It is not unreasonable to suppose, however,
that the leading pair of eddies might eventually become eliminated as the expansion
proceeds to higher powers of U/v, and that the trailing pair might localize themselves
in the immediate wake of the cylinder. However, an extension of the analysis to the
third and higher functions promises to prove exceedingly complex, since great precau-
tions are necessary in this anomalous problem to ensure that all significant terms are
retained in the expanston.
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It will be evident that parallel results might be obtained for cylinders of other cross-
sectional shapes, not extending to infinity. For a system of confocal ellipses & = const.,
specified by an orthogonal transformation of type

A =z + 9y = cosh (€ + 1),

the appropriate initial (anomalous) function is

b — UE sinh £ sin 7,
e
in which 8 is assumed indefinitely large.

The most convenient further procedure is, clearly, transformation of equation (119)
to the curvilinear variables £ and v. Solutions analogous to (127) might thus be deduced
both for an elliptic cylinder and for the degenerate form, the flat plate. |

It is probable, however, that a more profitable line of enquiry centres in the applica-
tion to simple problems in which anomalous features are absent. From the standpoint
of general interest the case which, no doubt, claims priority, is that discussedin §12,
where a cylinder both transiates and rotates in the presence of a wall. When 8 = 0,
the solution (105) reduces to a particularly simple form. It must be remembered, how-
ever, that even with the simplest contact problems enumerated in §11,the difficulties
entailed in a purely analytical application of the class variable method will prove con-
siderable. For this reason, it is thought desirable to limit the present paper to the
preliminary stages now reached, and to reserve the extension of particular solutions
for a future contribution. ‘

In conclusion, the writer wishes to acknowledge his indebtedness to Dr. H. Lawms,
F.R.S., to Mr. R. V. SovrawrrL, F.R.S., Superintendent of the Aerodynamics
Department, National Physical Laboratory, and to Prof. G. I. TavLor, F.R.8., who
have tendered valuable criticisms and advice in regard to the general arrangement of
the subject matter and diagrams.
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